
Using Application-Driven Checkpointing for
Hot Spare High Availability

Antti Kantee
<pooka@cubical.fi>

Cubical Solutions Ltd.
http://www.cubical.fi/

ABSTRACT

For critical services downtime is not an option. The downtime of the service can be
addressed by replicating the units that provide the service. However, if the session state is
important, it is not enough to simply replicate units: sharing the continuously updated internal
state of the units must also be made possible. If execution can be continued on another unit
after the point-of-failure without any significant loss of state, the unit is said to have a Hot
Spare.

Saving the state of a unit so that it can be restored at a later point in time and space is
known as checkpointing. For the checkpointing approach to be a viable option in interactive
services, it must not disrupt the normal program operation in any way noticeable to the user.

The goal of this work is to present a checkpointing facility which can be used in appli-
cations where checkpointing should and can not disrupt normal program operation. To
accomplish this, the responsibility of taking a checkpoint is left up the application. The
implications are twofold: checkpointing will done at exactly the right time and for exactly the
right set of data, but each application must be individually modified to support checkpointing.
A framework is provided for the application programmer so that it is possible to concentrate
on the important issues when adding Hot Spare capabilities: what to checkpoint and when to
checkpoint. Checkpointing efficiency is then further increased by introducing kernel func-
tionality to support incremental checkpoints.

1. Introduction

Hot Spare High Availability support
for an application means that if (when) the
primary unit fails due to a fault in either
software or hardware, a reserve unit will
automatically take over the responsibilities
of the primary unit. Execution will con-
tinue in the reserve unit with no or insignif-
icant loss of internal application state. In a
networking context this means that for Hot
Spare support to be accomplished, the

relevant pieces of the internal application
state must be succesfully delivered to the
spare units over the network at key points
during execution. In addition to delivering
the state to a spare unit, the system must
have some cluster control mechanism that
will take the necessary steps to transfer
control to a reserve unit when the current
primary unit fails. Once the problems
involving saving state and restoring state
are solved, the rest is mostly an issue which
software professionals tend to call a



SMOP1. Therefore, the bulk of this work
will concentrate on discussing the ideas
involving saving and restoring process
state.

There are already plenty of good
examples on fault tolerance in the world of
computing. A popular example from the
world of hardware is disk RAID. Certain
RAID levels provide protection against data
(state) loss in the case of unit failure. This
is what we are looking for. Howev er, in the
world of software it is difficult to keep state
across unit crashes. Therefore, most entry-
level solutions for fault tolerance only
include support for replacing the broken
processing unit, and give the problem of
keeping state less attention or outright
ignore it. If the unit state at failure-time is
ignored, it is not possible to provide a
seamless user experience across points of
failure.

The act of capturing a process state
for later restoration is known as check-
pointing. Traditionally checkpointing has
played big role in scientific computation,
where the requirements for checkpointing
efficiency and application interruption have
not been high on the list. If checkpointing
is to be used in environments where paus-
ing the application for abitrary periods is
not acceptable, new techniques must be
developed.

One of the reasons for the low effi-
ciency of the methods mentioned above is
that they are implemented below the appli-
cation level and transparent to the applica-
tion. While this means that the application
does not need to worry about checkpoint-
ing, it also means that checkpointing cannot
reach maximum efficiency, since the check-
pointing facility does not know about the
semantic behaviour of the application. This
problem is magnified if the application is
not "self-contained", i.e. it communicates
with the outside world. The solution is to
provide a checkpointing framework for the

1 Simple Matter Of Programming

application, and then modify each individ-
ual application to use that framework. This
way checkpointing effiency and accuracy
can be increased to an acceptable level.

In Chapter 2 of this work I will con-
centrate on defining Application-Driven
Checkpointing, and giving a general over-
view of the architecture. Chapter 3 dis-
cusses adapting a simple open-source appli-
cation to the framework. Efficiency of the
framework is discussed in Chapter 4, and
the story closes with conclusions in Chap-
ter 5. This paper will present the architec-
ture very briefly. For a more through dis-
cussion on the subject, the interested reader
is invited to look at my Master’s Thesis [1].

2. Application-Driven Checkpointing

First of all, it should be noted that
there are several components in a process
checkpoint, and they can be divided in dif-
ferent ways [2]. However, I wish to define
a simple division and only separate process
data and metadata. Data involves memory
used by application. This memory is
reserved from the heap, memory reserved
from the stack does not count as data in this
definition (neither does it count as meta-
data). Metadata is all the other state related
to the process, such as structures describing
open files and existing threads. Usually
most information involving metadata is hid-
den from the application e.g. in the kernel.

To record the processor physical
state2, the usual approach is to simply save
the register contents for example by taking
the core dump. However, we can observe
that most programs are structured so that
they hav e specific worker loops. An exam-
ple of such a worker loop is a function (per-
haps in its own thread) reading input from a
network socket and processing it. In the
usual case it suffices to record the informa-

2 By this I mean the register contents, and
am less interested in the actual electrons run-
ning around.



Checkpointing Kernel Interface

struct cpt_range {
void *addr;
size_t len;

};

pid_t cptfork(void);
ssize_t cptctl(struct cpt_range *ranges,

size_t nranges, int op);

tion that the program had a worker loop,
and do a normal function call into the
worker loop (with the correct input data, of
course) during restoration.

The above strategy also takes care of
the difficulties in checkpointing threaded
programs [3], where great care must be
taken to avoid other threads entering a bad
state. Other threads could, for example,
make a syscall between the timeframe the
checkpointing thread decides to checkpoint
and actually makes the checkpoint. A
straightforward restoration from this check-
point would cause invalid return values
from the kernel3. Solutions such as sus-
pending all threads for checkpointing have
a fair performance hit, especially if check-
pointing is to be attempted often for
increased checkpoint granularity.

2.1. Architectural details

The implementation was carried out
on two different levels. Most of the work is
done by a userspace library (Hot Spare
Library), but of course the work done by
the kernel components is implemented
inside the kernel. Ultimately the applica-
tion does not need the Hot Spare Library at
all, and could make the respective calls
itself, but the idea was to make the applica-
tion programmer be able to concentrate on
the critical issues and get as much support
from the system as possible.

3 No, there are no actual returned values in
this case. That’s why they are funny.

The user library deals with issues
related to capturing and restoring the appli-
cation metadata, reserving checkpoint-safe
memory, and also providing a grand unify-
ing interface, hs_cpt(), for taking a
checkpoint.

The kernel side takes care of provid-
ing cheap, atomic and asynchronous (from
the point-of-view of the calling thread and
application) snapshots of the memory area.

2.2. Checkpointing data

On UNIX® systems, the fork() system
call creates a process, which is almost an
exact duplicate of the calling process the
only main difference being the process ID
number. Historically, the fork() call really
did copy the entire address space of a
process when executed. However, this was
mostly wasteful, since fork() is frequently
used in conjugation with the exec() system
call, which replaces the entire address
space with a binary image from the disk.
Therefore a technique called copy-on-write,
or COW for short, was employed in AT&T
System V UNIX. The copy-on-write prop-
erty of fork() is close to what we are look-
ing for: it will give us both asynchronous
checkpointing ability and an atomic snap-
shot of the checkpoint-range.

Incremental checkpointing means
saving only the portions changed from the
previous checkpoint, and provides a cheap
performance boost in nearly every imagin-
able case. Therefore it is desireable to



implement support for incremental check-
points. Most userspace solutions employ
mprotect() to deny writing to critical areas
and track modification information with the
help of a SIGSEGV handler [4]. However,
since we are allowed to play in kernel land,
it is possible to avoid jumping between the
kernel and userspace to track modification
information. Modification information can
be tracked for example in the copy-on-write
fault handler or my asking the MMU.
Tracking modifications in the fault handler
would have its advantages, but since the lat-
ter was easier to implement4, it was done
for this work.

Kernel interface for checkpointing data

We must modify the kernel and VM
[5] to support three different operations for
incremental checkpointing to be possible:

• Add and remove memory areas which
contains checkpoint data.

• Take the checkpoint itself.

• Ask the kernel which pages of mem-
ory in checkpoint areas have been
modified since the previous check-
point.

The call sequency for the application
(or actually a programming library) which
wishes to use the interface is approximately
the following:

1. Decide which memory areas contain
data critical enough to be worth check-
pointing. Add those memory areas.

2. Decide it is time to checkpoint. Make
the checkpointing syscall.

2½. The parent process from cptfork() con-
tinues execution as normal, and makes
all the changes it wants to the check-
point memory areas. They are "pro-
tected" by copy-on-write.

3. The child process queries the kernel
for modified areas.

4 At least for platforms which have an
MMU that keeps this information. The
SPARCv9 MMU for example does not.

4. The child process writes the changed
memory areas (along with other
checkpoint data, we’ll get to that soon)
to back storage using its method of
choice, e.g. write to file or TCP
socket.

5. The child process exits.

2.3. Checkpointing metadata

For checkpointing metadata a slightly
different approach was taken. Most of the
information related to process metadata is
hidden in the kernel away from the applica-
tion. While we could simply add a kernel
interface to extract the in-kernel informa-
tion for the Hot Spare Library to trasmit
over the network, it would not be a good
idea. The kernel structures, such as vnodes
[6], are very integrally linked to each other.
Attempting to extract and restore them as
opaque data is not possible without creating
a huge mess. To grasp the concept of
checkpointing metadata, thinking of Java
Serializable [7] or Python Pickle [8] may
help.

I will go over one example of captur-
ing and restoring process metadata. The
rest of the descriptions are available in my
thesis [1].

Checkpointing file descriptors

There are several different type of file
descriptors: normal files, pipes, sockets,
crypto descriptors, and so forth. Not all of
them are supported. The serialization
information depends entirely on the type of
file descriptor we wish to serialize. For
example, for a file the important facts are
the filename used to open the descriptor,
the mode it was opened in, and the current
seek offset into the file. None of that infor-
mation applies to a networking socket and
we must provide other routines for it.

The information related to file
descriptors is not static: for example file
offset will constantly change if the file is
accessed. Therefore the library provides an



option to "refresh" the information related
to a file descriptor during each checkpoint
by asking the kernel. For a normal file this
would consitute of calling lseek(), while for
networking sockets it would most likely be
a matter of getpeername() and getsock-
name(). As there is a minor cost-penalty
for doing this, it is not done for all file
descriptors, but rather the choice of which
descriptors are critical in this respect is left
up to the application programmer.

Of course there is one huge downside
to querying the information at checkpoint-
time: since the entity doing the checkpoint
and the application itself are not (necessar-
ily) synchronized, the state that gets written
into the checkpoint does not necessarily
reflect the state present in the memory
dump. The application programmer is
encouraged to very carefully think how
important the exact file descriptor state is,
and possibly even take steps to record the
state in the lock-protected checkpoint-area,
where it will be guaranteed to be correct.
However, doing so will probably open a
whole other can-of-worms™, and currently
there is no easy solution to the problem.

3. Adapting the framework

Adapting the checkpointing frame-
work to the all-important game Tetris is
presented next5 6. While the loss of a Tetris
score may not be the most tragic episode
that has hit human history, migrating the
Tetris game to a nearby system when the
original gets (literally) axed makes for a
powerful visual effect.

5 Creating a clustered Tetris solution was
suggested by Marcin Dobrucki, obviously as
a joke, but he should be more careful around
humor impaired people.

6 NetHack was of course considered, but
since it, as most games, always comes with
its own application-driven checkpointing
mechanism (saveg ames), the redundancy did
not seem worth the effort.

Tetris from the BSDgames package
is a fairly small program. The version
against which this discussion is written can
be found from the NetBSD CVS Reposi-
tory in src/games/tetris with the tag
netbsd-1-6-PATCH002. It constitutes
of less than 2000 lines of code.

The state of the Tetris game can be
broken into the following elements:

• score

• current piece

• next piece

• state (of pieces already placed) on the
board

There are two good choices for checkpoint-
ing places: at the beginning of each cycle
when a new piece appears at the top, or
each time a piece moves. The latter option
introduces much overhead into the game,
and the former would be a natural choice.
But since it can be argued that the latter is
"better" (better granularity), and it does not
kill performance, it was chosen.

The worker loop

The main loop of Tetris does practi-
cally everything from user input monitoring
to moving the piece to checking if the piece
fits to bumping the score. Therefore it
makes a very good candidate to be regis-
tered as the worker function. The only
thing we need to do is take the loop out of
main(), and place it into its own function.
This is done because we need to call the
main loop directly if we wish to do a
restore from a checkpointed situation. If
the program would go through main() also
when restoring from a checkpoint, it would
initialize its runtime state to zero, and
defeat any purpose of Hot Spare check-
pointing.

In addition to moving the main loop
into the worker function, we also move
some screen-related initialization there.
This is done because we need to set up the
screen also on the spare if the program



execution is handed over. Normally the
Hot Spare Library provides routines for all
necessary state-saving functionality, but
since it was written with daemons, not
interactive applications, in mind, it does not
provide routines to save screen state.
Nonetheless, this serves as an example of
the fact that when the Hot Spare Library
does not provide the necessary routines, it
is possible for the application to define
them in its own domain.

Finally, the code that takes care of
returning screen setup to a sane state needs
to be moved into the worker function after
the main loop. The spare program has no
knowledge it should fall back to main(),
since the worker function was called
directly from the Hot Spare Library, and
will exit after returning from the worker
function.

Saving state

Since this version of Tetris was writ-
ten in the early 90’s, it was written like
most programs of old: state is kept in the
data segment as global variables. This is
unacceptable for us, since we need to store
critical data in areas which will be included
in the checkpoint.

The task of moving the information
from the data segment to checkpoint-safe
memory is a fairly simple one: we simply
"collect" the state from global scope in the
source module tetris.c, and create
struct tetstate, in which all the
variables essential to the state are placed.
This structure is added to the checkpoint
memory area when Tetris is initially
started. All the references to the state vari-
ables must be fixed to point inside the
checkpoint-safe structure. It can be accom-
plished either by using cheap tricks with
the preprocessor (#define) or by a sim-
ple search-and-replace operation with a text
editor or shell utility. Most of the time tak-
ing the effort to do an actual search-and-
replace pays off and avoids unwanted and

weird side-effects, although the bulk of the
differences may then amount to changes in
variable referencing.

Normally multithreaded programs
avoid using global state and pass the con-
text of the call as a parameter. In this case
the program state will most likely already
be readily contained, and no modifications
such as with Tetris and other older non-
threaded programs should be required.

In addition to the memory and
worker "thread" state, the game registers a
few signal handlers. Although they could
be registered via the hs_sigreg() facility,
they are an integral part of the screen setup
code. Since we run that code anyway, the
signals get proper treatment even without
explicitly including them in the checkpoint.

Conclusions

Adapting Tetris from the BSDgames
package for application-driven checkpoint-
ing was a simple job. It was accomplished
in just a few hours time after first looking at
the source code. The factors that amounted
to the ease of checkpointing adaption were
the limited size and instantly clear intuition
on what to checkpoint. The non-threaded
programming approach and consequent
lack of state grouping were the only diffi-
culties encountered.

4. Performance

In this chapter I present some key
benchmarks. Since we are interested in the
performance of the checkpointing module
and less interested in the operating system
and network performance, the checkpoint-
ing process does not transmit the check-
points anywhere for restoration. Check-
point data is simply written into
/dev/null. All the tests were run on a
300MHz AMD K6-2. It is not "current"
technology, but this work is not targeted for
any specific machine, so it is a safe choice.



Checkpoint Duration - Total Memory Size

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000

Checkpoint time (microseconds)

Checkpointable size (kilobytes)

cptfork()
fork(), no wired memory

fork(), wired memory
synchronous, local pipe

The first test examines how the
checkpointing time from the application
point-of-view is influenced by the amount
of checkpoint-safe memory registered.
This amounts to the time in between calling
hs_cpt() and returning from the function.
Between checkpoints the parent modifies
10% in sets of four contiguous pages and
sleeps for one second.

For taking a synchronous checkpoint
in application context the system was modi-
fied somewhat. Writing the checkpoint to
/dev/null also in the case of a synchro-
nous checkpoint would be unfair, since
transfer speed to the spare is the limiting
factor. For application context synchronous
checkpoints the preferred way is getting the
checkpoint contents as quick as possible
somewhere else, so that the application can
continue with its normal tasks. For bench-
marking purposes I opted to write to a local
pipe, since it is faster than transmitting the
data over the network. In this case the
other end of the pipe just reads data to

empty the pipe buffer, but in real life it
would naturally also take care of making
sure the data reaches the spare units.

The results are what was expected.
When dealing with wired pages, plain
fork() is hideously expensive. This is
because it copies all wired memory to the
child process. As you can see, the results
go "off the scale" fairly early.

Without wiring pages fork() is the
cheaptest alternative from the application
point-of-view. It starts out slightly heavier
base cost than cptfork(), but quickly catches
up and follows an almost constant trend
after that. The difference in base cost can
be accounted to the fact that fork() marks
all regions copy-on-write, while cptfork()
shares most of them. However, the price to
pay for doing a full asynchronous check-
point with fork() is of course the amount of
data to be sent over to the spare.

The cost of doing cptfork() is very
close to linear with an added base cost for



Checkpoint Duration - Dirty Pages

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80

Checkpoint time (microseconds)

Dirty Pages (percent)

cptfork()
fork(), no wired memory

doing common tasks required when
fork()ing. The linear cost can be explained
by having to go through all pages marked
checkpoint-safe and checking them for
modification information before allowing
the parent of the cptfork()ing process to
return.

Taking a synchronous checkpoint by
writing to a pipe starts out about as cheap
as the non-wired fork()ing alternatives, but
exhibits high costs when the checkpoint
size is even slightly increased.

Varying Amount of Dirty Pages

To see how the amount of dirty pages
affects checkpointing cost from the applica-
tion perspective, a test which modifies a
varying number of pages was run. The test
reserved 4MB of memory and did modifi-
cations in sets of four contiguous pages. In
the case where 95% of the pages were mod-
ified, 25 contiguous pages were used
instead to make the test runnable. The

main purpose of this test was to see if it
becomes clearly cheaper to take a full
checkpoint instead of using the cptfork()
approach at some point.

The asynchronous approach exhibits
a clearly linear trend in addition to the cpt-
fork() base-cost. The same can be said
about normal fork(), except that the linear
coefficient is much smaller in the latter
case. I am not totally sure where the linear
coefficient comes from, but my educated
guess is that accessing pages influeces vari-
ous caches in the system. The cptfork()
case takes more performance penalty from
this, because it does more lookups than a
normal fork(). If nearly all pages are modi-
fied, cptfork() is 5ms slower than plain
fork(). This difference is significant, since
the longer the checkpoint memory area is
locked, the longer other threads can be
blocked7.

7 Checkpoints are taken with important
areas locked by the application to avoid them
being in a "bad state" in the checkpoint.



Analysis of Results

Ultimately we wish to know which
approach is the cheapest for each given sit-
uation. It is clear that application context
checkpointing is not worthwhile unless
there is extremely little data to checkpoint,
perhaps only a page of memory or so8.
Once the checkpoint size gets into the
range of tens of kilobytes and beyond,
asynchronous checkpoints stall the applica-
tion for much less.

While doing full asynchoronous
checkpoints employing fork() is a win from
the point-of-view of the application, that is
only half of the truth. The cost of transfer-
ring the checkpoint to spare units becomes
a huge factor for applications which wish to
register a myriad of memory, but only mod-
ify it seldom. This limits the granularity of
full checkpoints. Av ailable bandwidth will
most likely be saturated by information
which remains the same from one check-
point to another.

Looking at all the graphs presented
in this chapter, it is clear that cptfork() is
the most performant alternative as long as
there is enough memory in the checkpoint
range, and if not too big a portion of that
memory space is modified in between
checkpoints. After reaching a high enough
modification percentage a full checkpoint
becomes cheaper. Unfortunately we do not
know the amount of dirty pages before
making the decision to checkpoint using
cptfork(). After taking a hit from the over-
head of doing cptfork(), it is too late to
change our mind.

We could address the problem pre-
sented in the previous paragraph by record-
ing page modification information already
when the page is modified. Since our
checkpointable memory ranges are marked
copy-on-write, the operating system takes
page faults to copy pages which are being

8 Assuming of course small, kilobyte-
sized pages. Megabyte-sized "large pages"
are right out.

modified. In addition to gaining knowledge
on modification statistics before making
any expensive decisions such as cptfork(),
there would be other benefits.

• There would be no need to do a
lookup for all the pages in checkpoint
memory ranges during cptfork(), as
the modification information could be
already recorded in a simple form,
such as a bitmap. This would effec-
tively cut down the checkpoint-time
from O(total_pages) to O(pages_mod-
ified).

• The scheme would also work on plat-
forms which do not have page modifi-
cation information in their MMU.

5. Conclusions

This work set out to investigate the
possibility of using a checkpointing
approach for Hot Spare High Availability in
environments where the application is time-
critical and freezing it for an arbitrary
period during execution for taking the
checkpoint is not acceptable.

The key idea in the approach was to
make checkpointing the responsibility of
the application, since it best knows what it
is doing with its state as opposed to an
external facility, which must treat all data
as opaque. The efficiency of the architec-
ture was enhanced by adding a kernel com-
ponent, which serves the application-level
library by providing information on which
pieces (memory pages) have changed since
the last checkpoint.

If the application itself contains vast
amounts of redundant state, using applica-
tion-guided checkpointing to carve out the
necessary bits will increase performance
dramatically. Incremental checkpointing
will enhance performance more and more
as the ratio of modifications between
checkpoints to the entire checkpointable
memory area decreases.



The Hot Spare Library was written to
be both portable and flexible. It provides
most of the functionality necessary for
standard applications, but since checkpoint-
ing is application-driven, the application
itself is free to handle anything else it needs
to checkpoint.

The biggest part of the work for
someone who wishes to use an application-
driven scheme is of course adapting the
application. It was shown that for a small
application the work was just a matter of
hours. For a large application, the time
depends greatly on how familiar one is with
the application before starting the modifica-
tion task, and how the application was writ-
ten. The task varies from ‘‘trivial’’ to
‘‘impossible without rewriting the entire
application’’, and it is impossible to give an
accurate estimate without knowing the par-
ticular application.

This work did not address the prob-
lem that unfortunately makes the approach
invalid for most network services: migrat-
ing applications which depend on a persis-
tent TCP connection is not possible9.
There are two ways to fix the problem:
either teach the application and protocol
that the connection may be broken if migra-
tion takes place, or modify TCP on both
endpoints to cope with migration. Unfortu-
nately, neither approach is non-intrusive
from several perspectives, and the modifi-
cations are far from trivial, either logisti-
cally or technically.

As a concluding remark it can be said
that the application-driven approach was
found to be a working one, and under the
right circumstances and right software it
can be an extremely attractive option for
providing Hot Spare High Availability.

9 I do not know if it is any condolence that
the TCP problem makes just about any
checkpointing approach inapplicable.

References

1. Antti Kantee, Using Application-
Driven Checkpointing Logic for Hot
Spare High Availability, Master’s
Thesis, Helsinki University of Tech-
nology (September 2004).

2. Yi-Min Wang, Yennum Huang,
Kiem-Phong Vo, Pi-Yu Chung, and
Chandra Kintala, Checkpointing and
Its Applications, pp. 22-31, 25th
International Symposium on Fault-
Tolerant Computing (June 1995).

3. William R. Dieter and James E.
Lumpp, Jr., A User-level Checkpoint-
ing Library for POSIX Threads Pro-
grams (1999).

4. James S. Plank, Micah Beck, Gerry
Kingsley, and Kai Li, Libckpt: Trans-
parent Checkpointing under Unix,
Winter Usenix Conference (January
1995).

5. C. Cranor, Design and Implementa-
tion of the UVM Virtual Memory Sys-
tem, PhD thesis, Washington Univer-
sity (August 1998).

6. S. R. Kleiman, Vnodes: An Architec-
ture for Multiple File System Types in
Sun UNIX, pp. 238-247, Summer
Usenix Conference, Atlanta, GA
(1986).

7. Sun Microsystems, “java.io Interface
Serializable,” Java2 Platform, Stan-
dard Edition, v1.4.2 API Specifica-
tion.

8. Guido van Rossum and Fred L.
Drake, Jr., “pickle -- Python object
serialization,” Python Library Refer-
ence.


