
Mac OS X binary compatibility on NetBSD:

challenges and implementation

Emmanuel Dreyfus

September 2004

Abstract

Binary compatibility is the ability to run binaries from foreign Operating Systems (OS)
with a minimal performance penalty. It is limited to binaries built for the same processor
family.

In this paper, we describe how binary compatibility works in NetBSD and then
we concentrate on the challenges we need to overcome in order to execute Mac OS X
binaries. Finally we present the current status of the project, together with the roadmap
for the future.

It is assumed that the reader is familiar with Unix system programming.

1 Binary compatibility

NetBSD has a long record in binary compatibility with other operating systems. Pro-
vided a program was built for the same processor, NetBSD is able to execute it despite
the fact that the program was not built for NetBSD but for Linux, FreeBSD, Solaris,
IRIX, or many others. In this part, we will have a quick look at how binary compatibility
works.

1.1 kernel and user mode

UNIX systems have two distinct mode of operation: user mode, and kernel (or system)
mode. In user mode, the operating system executes code provided by users. This code

is run with restricted privileges. It has limited access to the computer’s memory, and
usually no access at all to the hardware.

When running in kernel mode, the OS is only executing trusted code, which was
loaded at boot time. This code is known as the OS kernel. The kernel has full access to
the memory and hardware. It is here to provide services to user programs: giving access
to the hardware, scheduling processes, and enforcing resource allocation and protection.

The transition from user mode to kernel mode occurs on events called traps. A trap
is a hardware or software exception that suspends user process execution, and gives
control to kernel code. The kernel will handle the exception, after which it may return
to user mode and resume the execution of the user process, or it may destroy it. Example
of traps are division by zero, memory faults (accessing any virtual addresses where no
physical memory is mapped), timer interrupts (that are used to switch between user
processes), or system calls. System calls are software traps called by user processes
to request access to resources controlled by the kernel. They can be seen as functions
called by the user process executing with kernel privilege.

System calls are used to perform a lot of different tasks, ranging from reading from a
file to creating a new process, or setting network communication options. The behavior
of each system call is documented in section 2 of the manual. The operation described
above are therefore documented in read(2), fork(2), and setsockopt(2).

Each system call has a number, typically ranging from 0 to a few hundred. On
many processors, system calls are invoked by loading CPU registers with the system
call numbers and parameters and by calling a CPU instruction that cause trap. Here
is an example of PowerPC assembly that call the fork() system call on NetBSD:

li r0,2 # 2 is the system call number for fork()
r0 is the register holding the system call number

sc # sc is the CPU instruction that causes the trap.

There is a clean separation between user mode and kernel mode. User processes run
on top of the kernel with very little knowledge of what is inside a system call. They
just expect a behavior documented by kernel developers in a set of man pages. Most
programs do not care about kernel internals and will just work if you change the kernel,
as long as the system call behavior is left unchanged. This is how binary compatibility
works: by emulating the kernel behavior. The user program runs at full speed and is
fooled into thinking it runs on the kernel it was built for, whereas it is really running
on the NetBSD kernel.

1.2 System call tables

As we explained earlier, when a trap is encountered, control is transfered to the kernel.
The kernel calls a function known as the trap handler to take care of the exception.

When the trap is a system call, a particular trap handler – the system call handler –
is invoked. The system call handler looks in a table for the function implementing the
system call – this is the system call table. The system call number is used as an index
in the system call table.

Here is an excerpt of the file that defines the system call table in NetBSD. This file,
which is named syscalls.master, is not written in C language. A shell script uses
syscalls.master as input to produce several files in C language.
1 STD { void sys_exit(int rval); }
2 STD { int sys_fork(void); }
3 STD { ssize_t sys_read(int fd, void *buf, size_t nbyte); }
4 STD { ssize_t sys_write(int fd, const void *buf, size_t nbyte); }
5 STD { int sys_open(const char *path, int flags , ... mode_t mode); }

The first idea behind binary compatibility is to have multiple system call tables:
the native system call table for native processes, the Linux system call table for Linux
processes, and so on.

As emulated OSes usually provide equivalent functionality as NetBSD does, the
system call tables used to emulate them tend to mostly contain wrappers that call
native kernel functions after doing some argument translation. When the native code
succeeds the reverse argument translation takes place, or if the system call fails, the
appropriate error code is returned. In some rare situations, an emulated system call
has no native counterpart and it must be completely re-implemented.

Of course, the kernel must have a clear idea of what system call table must be used
for a given process. It does that by keeping track of the emulated OS for each process.
At process launch time, in the execve() system call, the OS emulation is discovered
and the appropriate system call table is selected. This system call table will then be
used for any system call the process will issue.

There are a few other problems that must be taking into account, including the
transitions from kernel to the user process: when the process is first launched, or when
it catches a signal, the kernel must setup the stack and registers in the same way the
emulated kernel would have do. This is implemented in NetBSD by having emulations
hooks for that operations, so that a given binary compatibility layer can perform its
particular setup.

Another major problem is dynamic linking. If an emulated program is dynamically
linked, it will open shared libraries, which must be built for the same OS. The program
usually expects these foreign libraries to be in the same place and with the same names
as NetBSD native libraries.

The solution to that problem is to have a shadow root directory for foreign processes,
where files are first looked up before looking at the real root. For instance, when a
Linux binary attempts to open /usr/lib/libncurses.so, the NetBSD kernel will first

attempt to open /emul/linux/usr/lib/libncurses.so and if that fails, it will try
/usr/lib/libncurses.so.

The shadow root directory is also extremely useful to store configuration files for
foreign binaries, as the file names often clash with their native counterparts.

2 Mac OS X binary compatibility challenges

Binary compatibility is an old feature in NetBSD, and the kernel now contains enough
compatibility code to easily emulate another Unix flavor. But when we came to Mac OS
X binary compatibility, we hit several new challenges that had never been encountered
while working on binary compatibility layers in NetBSD.

Here is a list of the most challenging problems:

• Mac OS X uses an executable format called Mach-O. NetBSD knew nothing about
Mach-O. It was only able to run ELF, ECOFF, and a.out binaries.

• Mac OS X is an hybrid system, based on a Mach kernel and a BSD kernel. It
features a dual system call table: positive system call numbers refer to the BSD
system call table, and negative system call numbers refer to the Mach system call
table. NetBSD never had to handle such an odd setup.

While Mac OS X’s kernel BSD interface is very close to NetBSD kernel interface,
and therefore can be very easily emulated, the Mach interface has just nothing to
do with a Unix system. This is a complete set of system calls with no NetBSD
equivalents that must be completely re-implemented.

• NetBSD provides user programs with hardware device access through traditional
Unix device files, in the /dev directory. Mac OS X provides such a feature for a
limited subset of devices: mostly storage units and terminals. Other devices, such
as video, keyboard and mouse, are made available to user programs through the
IOKit, an extended device driver interface specific to Mac OS X.

• And last but not least, NetBSD uses the X Window System for the graphic user
interface, whereas Mac OS X uses Quartz, a PDF based display system. The
two systems are similar but incompatible: they are both based on a client/server
scheme, which a display server handling the video output and graphic user inter-
face applications behaving as client. The protocol used between the clients and
the server is different.

3 Running Mach-O binaries

Binary compatibility layers are usually developed in an incremental way. The developer
attempts to run a simple binary built for the target OS, and of course that fails. The
failure is caused by a feature of the target OS kernel that the NetBSD kernel does
not emulate properly. The developer fixes that by implementing the missing feature
emulation, retry running the binary, finds another failure, and things repeat until the
emulation is good enough to transparently run the foreign OS binary.

When trying to implement a feature emulation, a few sources of informations are
useful: the man pages and other system documentation, and the system include files.
For some OSes, such as Linux or FreeBSD, a possible source of information is the kernel
sources, but contrarily to a popular belief, having access to the target OS source code
does not help very much. What we are interested in is the target system behavior, not
its implementation. It tends to be much more productive to write unit test programs,
to run them on the target OS, and to see what they do, rather than reading the target
OS kernel sources to understand what it should do.

Usually, the work is done on system calls emulations. But when trying to run a Mac
OS X binary, the first show stopper was not occurring on a system call. The NetBSD
kernel was unable to actually load and launch the foreign binary. The reason for that
failure was that Mac OS X uses an executable format called Mach-O, which was not
known to NetBSD.

NetBSD knew about the legacy a.out and the newer ELF executable formats. Mi-
gration from a.out to ELF occurred a long time ago, but NetBSD retained the ability
to run a.out binaries, for the sake of backward compatibility. The support for running
binaries in two different executable formats on the same kernel helped a lot when in-
troducing Mach-O executable format support. Let us have a closer look on how it was
done.

The execve() system call is responsible for running a new binary. It uses a struct
execsw table called the exec switch to perform its duties. Each entry in the exec switch
defines the operations used to load the binary for a given OS emulation and executable
format. For example that switch contains entries for NetBSD ELF binaries, NetBSD
a.out binaries and Linux ELF binaries, among many others. The first part of the job
was to add an entry for Mac OS X Mach-O binaries.

This entry defines a few operations for loading Mach-O binaries, which had to be
implemented:

First, the probe function. Each entry in the exec switch defines a probe function
whose task is to tell if the entry is able to run a given binary or not. The probe function
looks at the executable header to decide if it is a binary it can handle. In execve(),

the kernel first walks the exec switch, using the probe functions to discover which entry
should be used to execute the binary.

Once the kernel knows which entry in the exec switch should be used, it uses another
function – the makecmds() function – to load the executable. This function is responsible
for setting up the process virtual memory space, loading the text and data sections from
the executable, and setting up stack space.

Things are more complicated when implementing the makecmds() command for
Mach-O binaries than for ELF binaries. Mach-O binaries can be fat, that is, they can
contain text segments for different architectures. Of course that needed to be taken into
account so that the right text section would be loaded.

Another difference is in object loading. When loading an ELF executable, the duty
of the kernel is just to load the executable, and possibly a dynamic linker. With Mach-O
binaries, the kernel also has to load any dynamic library needed by the executable. The
kernel duty stops there, as it is not required to load the libraries used by the libraries
used by the program: the dynamic linker will do that from userland.

Finally the kernel needs to setup the stack and populate it with arguments and other
information the userland startup code expects. There are some Mac OS X oddities
here: On many systems, the stack of a newly created program starts by the argument
count and a pointer to the argument vector (the famous argc and argv arguments to
the main() function of a program written in C). Mac OS X processes’ stack starts by a
pointer to a copy of the Mach-O executable header, the argument count and the pointer
to the argument vector.

In NetBSD kernel source, all the code for running Mach-O binaries was written by
Christos Zoulas. It can be found in src/sys/kern/exec_macho.c. The exec switch is
defined in src/sys/sys/exec.h and src/sys/kern/exec_conf.c. The code used to
setup the stack of Mac OS X processes is available in src/sys/compat/darwin/darwin_
exec.c.

4 Mach system calls

As we explained earlier, the Mac OS X kernel is an hybrid system, featuring two sets of
system calls. Apple used the following scheme: positive system call numbers are used
for the BSD interface, whereas negative system call numbers are used for the Mach
interface. Mac OS X user processes mix system calls to both parts of the kernel: BSD
and Mach. The BSD part features a well known Unix kernel interface, while the Mach
part’s interface has just nothing common with Unix.

Mach is a microkernel, implementing virtually anything as processes called servers.

some servers run in user mode, other run in kernel mode. The kernel only provides two
services: process scheduling and Inter-Process Communication (IPC). IPC is extensively
used in a Mach-based system, because a process that need a system resource will send
a request to a server process instead of sending it to the kernel as it does on a Unix
system.

Most of the Mach kernel interface is therefore devoted to Mach IPCs. The Mach
microkernel implements a message passing system, which uses objects called messages,
ports, and rights.

A Mach message is a packet of data with a 24 bytes header and a payload that can
carry any information.

A Mach port has nothing to do with TCP or UDP ports. It is a message queue
maintained in the kernel. A single process reads from it whereas multiple processes
may write to it. Each message is sent with a destination port and a source port, so that
the server can answer the request to the right process.

A Mach right determines a process access right on a port, such as a send right or a
receive right. The right is a kernel resource that the process acquires, uses and releases,
just like files in Unix. For the process, a right is handled through a 32 bits integer, which
is usually called a port name. You can think of port names as Unix file descriptors.
Rights can be obtained through some Mach system calls, or they can be carried by
messages. For instance, when a process receives a message from another process, the
message normally carries a send right to the source port so that the receiver can reply
to the message.

The Mach system call table can be found in src/sys/compat/mach/syscalls.

master in NetBSD kernel sources. The most frequently used system call is msg_trap(),
which is used to send and receive Mach messages. This system call was quite compli-
cated to implement since it has to handle both sending and receiving, asynchronous
reception, timeouts, and other features. Moreover, it has to juggle with port and right
lists. msg_trap() is implemented in src/sys/compat/mach/mach_message.c.

In order to make debugging easier, the ktrace command on NetBSD was modified
to record Mach system calls, a feature which is not available in Mac OS X’s ktrace.
NetBSD ktrace is even able to dump Mach messages. Here is an excerpt of the kernel
trace for the Mac OS X’s ls command running on NetBSD. It gives a good insight on
the way Mach IPC works.

541 ls CALL host_self_trap
541 ls RET host_self_trap 35454977/0 x21d0001

(...)
541 ls CALL reply_port
541 ls RET reply_port 35454979/0 x21d0003
541 ls CALL msg_trap (0 xbffedd70 ,3,0 x18,0x30,0 x21d0003 ,0,0)
541 ls MMSG host_page_size [202]

000 00001513 00000000 021 d0001 021 d0003

010 00000000 000000ca
541 ls MMSG host_page_size reply [302]

000 00001200 00000028 00000000 021 d0003(........
010 00000000 0000012e 00000000 00000000
020 00000000 00001000 00000000 00000008

541 ls RET msg_trap 0

host_self_trap() gives a send right to the host port, which is used to request
host-specific configuration. reply_port() allocates a receive right to a new port. Then
msg_trap() is used to send a message to the host port and get a reply.

The Mach message header is defined in src/sys/compat/mach/mach_message.h. It
contains 6 words of 32 bits:
typedef struct {

mach_msg_bits_t msgh_bits ; /* flags */
mach_msg_size_t msgh_size ; /* message size */
mach_port_t msgh_remote_port ; /* destination port */
mach_port_t msgh_local_port ; /* source port */
mach_msg_size_t msgh_reserved ; /* unused */
mach_msg_id_t msgh_id ; /* Message Id */

} mach_msg_header_t;

The message Id is used to characterize the message meaning and the payload type.
Here, a message Id of 202 sent to the host port requests the machine memory page size.
The message payload is void. The server listening behind the host port responds by a
message with a 24 bytes payload. That message ends with a 32 bits word containing
the requested value (here 0x1000, or 4096), followed by a 64 bits message trailer.

It is interesting to note that using the Unix kernel interface, the same operation can
be done by doing a single call to sysctl(), requesting the hw.pagesize variable.

5 Mach kernel servers

The Mac OS X kernel implements many Mach servers inside the kernel. They can be
reached through three ports: the host port, the task port and the thread port. The
host port is used to request configuration about the machine the caller is running on,
whereas the task and thread ports, are used to request system resources on behalf of
the calling task (a task is a Unix process in Mach terminology) or thread.

Because binary compatibility takes place at the kernel boundary, NetBSD had to
implement all the Mach kernel servers. Instead of implementing different kernel threads
servicing the requests, the NetBSD kernel services each request in the process context
of the caller. The message Id is used to lookup the function that will get the request
message and produce the reply.

The NetBSD implementation of msg_trap() uses a table defined in src/sys/compat/
mach/mach_services.master to select the appropriate function. Like the syscalls.

master file, this file is not written in C, and a shell script is used to produce various C
files from it. Here is an excerpt from that file:
200 STD host_info
201 UNIMPL host_kernel_version
202 STD host_page_size
203 UNIMPL memory_object_memory_entry
204 UNIMPL host_processor_info
205 STD host_get_io_master
206 STD host_get_clock_service
207 UNIMPL kmod_get_info
208 UNIMPL host_zone_info
209 UNIMPL host_virtual_physical_table_info
210 UNIMPL host_ipc_hash_info

Here we find the information that a Mach message with message Id 202 must be
handled by the host_page_size() function. This function is defined in src/sys/

compat/mach/mach_host.c. Here is its complete implementation:
int
mach_host_page_size(args)

struct mach_trap_args *args;
{

mach_host_page_size_request_t *req = args->smsg;
mach_host_page_size_reply_t *rep = args->rmsg;
size_t * msglen = args->rsize;

*msglen = sizeof(*rep);
mach_set_header(rep, req, * msglen);

rep-> rep_page_size = PAGE_SIZE;

mach_set_trailer(rep, * msglen);

return 0;
}

mach_host_page_size_request_t and mach_host_page_size_reply_t are the re-
quest and reply Mach messages, defined in src/sys/compat/mach/mach_port.h:
typedef struct {

mach_msg_header_t req_msgh;
} mach_host_page_size_request_t;

typedef struct {
mach_msg_header_t rep_msgh;
mach_ndr_record_t rep_ndr;
mach_kern_return_t rep_retval;
mach_vm_size_t rep_page_size;
mach_msg_trailer_t rep_trailer;

} mach_host_page_size_reply_t;

host_page_size() call mach_set_header() and mach_set_trailer() to fill the
Mach header and trailer for the reply packet, and it sets the requested value: the page
size.

There are many other Mach kernel services, most of them being unused by Mac OS
X binaries and therefore left unimplemented in NetBSD. The most used services deal
with port, task, thread, and memory management. For example a task can spawn a

new thread or request a memory mapping by sending a Mach message to its own task
port.

And of course there are services implemented as user-level daemons. We do not have
to do anything special for them: the Mac OS X binary can be executed on NetBSD on
the top of the Mac OS X binary compatibility layer, and they will provide the adequate
service to other Mac OS X processes running on NetBSD.

6 Mach IPC bootstrap

The Mach IPC is at the core of Mac OS X, it is used intensively everywhere. As a
result, Mac OS X processes have a recurrent problem: how to obtain a send right on
the port of a given server?

For kernel-level servers, Mac OS X processes use the host, task and thread ports,
obtained by the host_self_trap(), mach_task_self(), and mach_thread_self() sys-
tem calls.

For user-level servers, a bootstrap mechanism is needed. The mach_init daemon is
responsible for providing this service.

mach_init, always running with PID 2, is the first user-level process spawn on Mac
OS X. The reader used to Unix will probably wince: Usually, init is the first process
spawn, and it has PID 1. Mac OS X even happens to have an init process with PID 1.

In fact, mach_init is really the first user process spawn, with PID 1. It then forks,
and the father, with PID 1, uses execve() to run init, while the child, with PID 2,
continue executing mach_init. This odd move is there to ensure that init still gets
the PID that a lot of Unix programs expect, while mach_init is launched first.

Once it has forked the traditional Unix’s init, mach_init behaves as a directory
service. It registers to the kernel as being the bootstrap process, thus making one of
its ports available to all processes through another special port any process can access:
the bootstrap port.

Each time a server process starts, it uses the bootstrap port to send a register
message to mach_init, giving the ports on which it is servicing and the service name.
And when a client process needs a send right to a server port, it uses the bootstrap
port to send a message containing the service name. mach_init will reply by a message
carrying a send right to the server port.

Implementing support for this was easy. We just had to implement the Mach service
used by mach_init to register its port: task_set_special_port. The NetBSD kernel
maintains a global variable called mach_bootstrap_port, and once mach_init registers,

any process requesting a send right to the bootstrap port will get a right to the registered
port. That way things work as expected.

But there was one small problem: mach_init checks its PID, and will only behave
as the bootstrap process if it is started with PID 1. On NetBSD, PID 1 is always used
by init, so it is not possible to book it for mach_init. It is not possible either to spawn
mach_init at system startup instead of init.

The solution was finally to fool mach_init into thinking it has the PID 1 whereas
it is not the case. mach_init uses the BSD system call getpid() to obtain its PID.
We just had to recognize that mach_init was started and have getpid() answering 1
instead of the real PID.

But the kernel has no way of recognizing mach_init. We therefore use the help of
the system administrator, which tells the kernel that it runs mach_init using a sysctl
variable.

This is done with the following shell command:
sysctl -w emul.darwin.init.pid=$$ && exec /emul/darwin/sbin/mach_init

Using sysctl, the system administrator informs the kernel that a Mac OS X process
running with this PID (remember that $$ is the shell’s PID) should be fooled into
thinking that it’s PID is 1. Then we use exec to run mach_init without forking a new
process, thus retaining the same PID.

That way, mach_init thinks it is the first process spawned, with PID 1, and it
behaves as the Mach bootstrap process.

Of course, Mac OS X being an open source OS, it would have been possible to patch
mach_init sources so that it does not check its PID and always behave as the Mach
bootstrap process, but the goal of binary compatibility is to run unmodified binaries
from the foreign OS, therefore the sysctl hack choice.

7 Handling binaries built for Mac OS X.3

Unix processes tend to use a a few library functions such as memcpy() or bzero very
often. In a dynamically linked executable, calling a library function means walking
various tables, which is time consuming. Starting with Mac OS X.3, Apple introduced
a nifty optimization: the kernel maps a few pages of code containing various utility
functions at the end of each processes’ address space. Theses pages are called the comm
pages.

The functions can be reached at an absolute memory address that is carved into the
stone. Calling such a function is blazingly fast because it just involve branching to a

well known address, there is no more performance loss caused by dynamic linking.

Another advantage of this approach is that the kernel can map optimized versions
of the functions that make use of some particular optional hardware feature, such as
Altivec on the PowerPC G4. The user process does not have to deal with checking
the hardware ability and/or the kernel version, nor does it have to include multiples
versions of some function to match various optional optimization.

For the binary compatibility layer developer, this optimization caused surprising
failures. As most of Mac OS X.2 command line programs worked on NetBSD, any binary
built for Mac OS X.3 quickly died with a segmentation fault. After some investigation,
it became obvious that something weird was taking place: the segmentation fault was
caused by the program jumping at a fixed absolute address where nothing was mapped.
Testing on Mac OS X with gdb did show that a page of memory containing code was
mapped at that fixed address. Because it was mapped before the process did any system
call, it was obvious that the kernel had to do it.

Fortunately, when running on Mac OS X, gdb displayed symbols when dumping the
memory in the comm pages, so it was not that difficult to understand the purpose of the
code they contained. The last part of the job was to actually implement the functions
in the comm pages. It had to be done in assembly, as some functions had to fit in a
small slot of memory, a constraint that a C compiler is not able to understand.

The assembly code for the comm pages can be found in src/sys/arch/powerpc/

powerpc/darwin_commpage_machdep.S. Peter Grehan, Srinivasa Kanduru, and Wolf-
gang Solfrank helped a lot writing it.

8 Running Aqua application and emulating the IOKit

By implementing the Mach IPC and a collection of kernel services, we have been able
to run most command-line binaries from a Mac OS X system. Programs using the X
Window graphic interface are also likely to work, though this has not been tested. But
what we are really aiming for is running programs using the native Mac OS X graphical
user interface, known as Aqua.

Aqua is based on a display system called Quartz, which is similar but incompatible
with the X Window system. Quartz uses a display server and Aqua applications are
clients that talk to the display server. In Mac OS X.2, the display server is called
WindowServer. In Mac OS X.3, it was replaced by QuartzDisplay.

The main problem with running Aqua applications is to have a Quartz display server
so that they can actually display something. We have several ways of obtaining a Quartz
Display server running on NetBSD.

• Write a Quartz Display server from scratch. That solution is clearly not the way
to go, since it means re-implementing the code for managing various video boards.

• Write a Quartz to X11 bridge, in order to reuse X11 video hardware support.
The problem with that solution is that we need to discover how Quartz clients
talk with the Quartz server in order to implement the bridge. Moreover, it is not
certain that this bridge is posible to implement, because Quartz seems to have
many more features compared to X Window.

• Use Mac OS X’s Quartz display server and run it on the top of our binary com-
patibility layer. We chose that path, with the idea that it will be easier to reverse
engineer the Quartz client/server interface and work on a Quartz to X11 bridge
once we will have the Quartz display server running on the top of NetBSD.

We therefore tried to run WindowServer, and later QuartzDisplay, on NetBSD.
The big problem we encountered was to provide an emulation for the IOKit, which is
the device interface used by the Quartz display server to access the video board, the
keyboard and the mouse.

Traditional Unix device interface is rather simple, not to say poor. Devices are
available through special files in the /dev directory, which can be opened for reading
or writing. Any operation that cannot be implemented through a read or write is
implemented through the ioctl() system call, a general purpose I/O function used for
virtually anything.

Mac OS X uses the traditional Unix device interface for disks and terminals, but
most of the hardware is not available through that interface. Video boards, keyboards
and mice are only available through a big object oriented framework known as the
IOKit. The IOKit provides mechanisms based on Mach IPC for discovering and ac-
cessing hardware. It defines device classes, and device drivers are objects within the
classes.

The display server uses two device classes: IOFramebuffer, to access the video, and
IOHIDSystem, for the input systems (keyboard and mouse). In order to run the display
server, we needed to implement an IOFramebuffer driver and an IOHIDSystem driver,
plus enough Mach services from the IOKit interface so that things just work.

The IOKit interface is quite complex and not exciting enough to be covered here.
The two drivers were more tricky.

Drivers in the IOFramebuffer class implement access to a framebuffer. There are
a few Mach services used to read and write configuration information about the frame-
buffer, such as pixel depth, color palette, gamma table, screen size, and so on.

IOFramebuffer drivers must also make two memory mappings available to a user

process that would request them:

• The framebuffer itself.

• A page of memory shared between kernel and userland where cursor related con-
figuration is stored. A user process can use that area to read the cursor position
or to modify the cursor visibility, for instance.

The biggest problem was to provide access to a framebuffer while the NetBSD kernel
does not know about all the various video boards that may be present in a machine.
Fortunately the Power Macintosh boot environment, known as Open Firmware, provides
a framebuffer to NetBSD. It is slow and not configurable, but it is available.

The IOFramebuffer driver in the Mac OS X compatibility layer maps the frame-
buffer from the wscons console driver. On a Power Macintosh, we know that this
framebuffer will be at least the Open Firmware framebuffer. If the NetBSD kernel sup-
ports accessing the framebuffer of the video board in a more efficient way (for instance,
NetBSD kernel’s machfb device is able to use the ATI Mach64 framebuffer), then the
IOFramebuffer driver will automatically use it.

As we do not support hardware accelerated cursors yet, the shared memory page
used for the cursor configuration is not emulated beyond a simple mapping of zero-filled
memory.

All the code for the IOFramebuffer driver is located in src/sys/compat/darwin/

darwin_ioframebuffer.c. The code that implements the IOKit interface is located in
src/sys/compat/mach/mach_iokit.c

The IOHIDSystem driver was the most difficult part. Like IOFramebuffer, it works
by mapping a shared page of memory between the kernel and the user program. The
kernel will write keyboard and mouse events to a queue located in that page. The
display server will read them from the queue. This mechanism saves a lot of system
calls for reading user input.

In our implementation, when the display server maps the page of shared memory,
the kernel spawns a new kernel thread that opens the wscons console driver. This kernel
thread, called iohidsystem, reads wscons input events, converts them to IOHIDSystem
events, and writes them to the queue. That way, the keyboard and mouse events are
made available to the display server, without the need to hack some hooks in the NetBSD
native input drivers for keyboard and mouse.

The code for the IOHIDSystem driver can be found in src/sys/compat/darwin/

darwin_iohidsystem.c

Working with the Quartz display server was not easy, as the IOKit interface is really
complex and the user program is not open source. Fortunately, XFree86 provides a X

server called XDarwin, which can use the IOKit. Working with XDarwin did help a
lot, since it was possible to poke debug printf() in it to understand how things were
going on.

We are now able to run a fully functional XDarwin on NetBSD/macppc. This
means that the IOKit emulation, the IOFramebuffer and IOHIDSystem drivers are
good enough to be actually used. Unfortunately, as of today, the Quartz display server
won’t work yet. Debugging the problems that prevent it from working is the next item
on the project TODO list.

Conclusion

Mac OS X binary compatibility in NetBSD grew quite large. It now features more
than 20.000 lines of C and assembly code. For now support has only been written for
NetBSD PowerPC ports. NetBSD could also run Darwin/i386 binaries, provided the
machine dependant part is ported (it accounts for 5% of the code).

As of today, NetBSD-current is able to run most command line tools from Mac
OS X. Mac OS X Programs using the X11 graphical user interface such as Matlab or
Open Office should work too, though nobody explored that area yet. It is difficult to
give an idea of when NetBSD will be able to run Aqua applications, because we do
not really know the issues we are going to encounter and solve. Moreover, some event
could shorten the delay: if some Quartz display server become available for NetBSD
(for instance as an open source Mac OS X remote desktop project), it would remove
the major problem.

The biggest and hardest part of the work so far was to implement the Mach IPC
and various Mach services related to task, threads, ports, memory, and many others
resources. The IOKit was one of the most complex part of the picture.

On the performance front, a comparison of Mac OS X and emulated Mac OS X on
NetBSD would be interesting. Binary compatibility does not cause major performance
loss. If the native implementation of a feature is much more efficient than the target
OS implementation, then the emulation can even be faster than the original for that
feature. Such a comparison will probably be the subject of a future paper.

Acknowledgements

Thanks to Christos Zoulas for reviewing this paper.

