
NetBSD/Desktop: Scalable Workstation Solutions

Jan Schaumann – Stevens Institute of Technology

Abstract
As a mature operating system with emphasis on code quality and standards compliance as well as an abundance of third-party
applications readily available, NetBSD offers an easily deployable and user-friendly desktop solution. Managing large numbers
of identical workstations can be facilitated through the use of a dedicated build server and an IPSec’d server-push strategy to
update the clients; a strategy which has proven to be reliable, secure and scalable.

1 Introduction

While BSD in general and NetBSD in particular has had a
reputation for being primarily a reliable and secure operat-
ing system for servers, it is (in the mainstream, at least) still
not considered “user-friendly enough” for the desktop. Yet
aside from the sheer number of available applications there
are distinct advantages to choosing NetBSD, a complete open
source operating system with emphasis on code quality and
standards compliance, especially when it comes to managing
a large number of identical desktop workstations.

This paper will elaborate on these advantages as well as
present techniques and strategies to install, maintain and up-
date large installations, accounting for the various needs of
many hundreds of users and the implied complexities of thou-
sands of third-party applications.

The infrastructure presented has been in production use in
the Department of Computer Science at Stevens Institute of
Technology for over 3 years, where it is used to manage sev-
eral public laboratories as well as most of the faculty work-
stations. It consists of a dedicated build server and an IPSec’d
server-push strategy to update the clients, providing scalable,
secure and easy updates of the operating system as well as of
all third-party application.

2 Why NetBSD?

In order to see why NetBSD would be a good solution for a
regular desktop system, we should investigate what exactly

is required of such a workstation and how it can be easily
duplicated and deployed in a large environment. In order to
address the first point, we need to look at the needs of the
target users:

Not very surprisingly, given the obvious heritage of UNIX
and BSD, Unix-like Operating Systems (OS) have long been
the preferred choice in academic institutions in general and
the field of Computer Science in particular. All users in such
an environment (faculty, researchers, students) have high ex-
pectations of the robustness of the OS and its performance.
At the same time, the widely different research interests re-
quire a large number of at times specialized applications to
be made available to them.

2.1 What does “user-friendly” mean, anyway?

Many people expect a desktop OS to be “user-friendly”, with-
out clearly understanding the meaning of this phrase. As
should become immediately clear from the varying needs and
expectations of a multifaceted user-base, it can mean different
things to different people, based on their background knowl-
edge, experience and interest. It would be prudent to charac-
terize any OS that allows these users to get their work done
efficiently to be “user-friendly”.

Oddly enough, the phrase “user-friendly” is often quoted
in the context of OS installation, software installation and
upgrades, security patches, and general maintenance. The
procedures involved in these tasks are not considered user-
friendly. This reveals the common misconception that a

“desktop” or a “workstation” is a single, autonomous ma-
chine used (and maintained!) by a single user.

Actually, the tasks most often described as not being “user-
friendly” are not – and should not be – performed by the
user, but rather by the administrator. Maintaining the com-
plex dependency-tree of installed applications, tweaking the
OS to remain performant under duress and keeping dozens
or hundreds of workstations in sync as well as available to
all users are not tasks for a regular user and pose an entirely
different set of requirements to the OS.

In the end, it boils down to this: The user of the desktop
must get work done. The administrator must be able to main-
tain such desktop systems easily and efficiently. What we
need is an “admin-friendly” OS with “user-friendly” applica-
tions!

2.2 Requirement: User-friendly

From the user’s point of view, all interactions with the OS are
characterized by the applications available on this platform.
As long as the right tools for the job are available, the user
may remain oblivious as to what exactly goes on “behind the
curtain”.

While commercial vendors release their software for only
a limited number of unix-like OS, the vast majority of the
available Open Source Software (OSS) – ranging from small
command-line tools to entire desktop environments or office
suites – is written for one or another version of Unix and can
(often easily) be ported to another flavor.

In a multi-OS environment, it is beneficial to the user if she
can use the same general desktop software and tools on one
host as on another. Maintaining the same set of installed ap-
plications at the same version across even different OS helps
avoid confusion when it comes to the user-interface or a user’s
configuration files.

Another important and often neglected aspect of user-
friendliness is the combination of, on the one hand, hiding
unnecessary complexities from one set of users while, at the
same time, catering to the expertise of another set:

Since the target user-base includes people with very spe-
cific interests in the field of networking, operating system de-
sign, and system security, as well as students who learn to
understand these concepts and develop software, the OS pro-
vided to them should allow them to use applications that are
not traditionally part of a so-called desktop system. This in-
cludes access to the software development tools such as dif-
ferent compiler toolchains and various scripting languages, as
well as the more typical desktop applications. In addition, it
is often beneficial to provide the full sources for the OS in use
to allow these users to look “under the hood” and understand
how the OS, and the tools provided by it, work.

2.3 Requirement: Admin-friendly

As explained in section 2.1, the user-friendliness of an OS
and its applications is necessary, but not sufficient to make a
sensible choice for your environment. We also need to take a
look at the qualities of an OS from the other point of view. In
fact, given that the majority of the software in use is available
for most unix-like OS, it seems that the admin-friendliness of
an OS might be the more important aspect of all!

A suitable OS should be easy to install, maintain and up-
date. A dependency on a specific hardware or software ven-
dor is equally undesirable as too inconsistent a base system.
On the one hand, we would want a complete OS with all base
applications (ie the userland) from the same source tree; this
allows for easy system maintenance and OS upgrades. At the
same time it’s important to ensure that all required software
applications are available; finally, we need to anticipate future
requirements.

With respect to hardware requirements, we must be able to
support state-of-the-art equipment without having to resort to
“bleeding edge” development snapshots. This, together with
the need for the necessary security patches, requires an OS
with a regular and reliable release engineering cycle. A ma-
ture and well thought-out third-party application framework
or package management system is equally important since the
vastly different needs of the many users imply a complex set
of software dependencies. Finally, we must be able to run a
few commercial applications that may not be available for all
OS.

2.4 So... why NetBSD?

Looking at the requirements and the target user base as an-
alyzed and described above, we see that NetBSD is a near
perfect match for this environment.1 NetBSD has a strong
following among system administrators: it provides a com-
plete OS, easily maintained in a single source tree and has
an outstanding security track record. No need to try to track
down and follow different development branches for each and
every single userland binary, nor is it necessary to adhere
to one commercial vendor’s idea of release engineering and
hope that other software vendors will adapt their packages
accordingly.

Through the use of binary emulation it is possible to run
a large number of commercial applications which may only
have been released for another OS.2

1This is not to say that other OS choices would not be justifiable; however,
the intimate familiarity with and knowledge of NetBSD by the administrators
clearly make it the easier choice. It is also worth noting that over the years,
experience has taught us that other, more popular choices would likely have
caused us more headaches.

2At Stevens, the most important applications in this category are Sun’s
JDK’s, MathWorks’ MATLAB and Maplesoft’s Maple; all industry standard
applications which perform without performance penalty using NetBSD’s
Linux emulation layer.[3]

Finally, installation of third-party software and mainte-
nance of all installed software is simplified by using the
NetBSD Packages Collection[2] (aka pkgsrc), a source based
software package management system. Through consistent
use of pkgsrc and its cross-platform features, not only are we
able to track over 1000 different applications and their inter-
dependencies, but we are also able to provide the same num-
ber of applications in the same versions across different OS
such as IRIX or Linux when this is necessary.

All currently used hardware – from regular single-
processor desktop workstations to multi-processor, SATA-
RAID enabled servers with support for fibre-channel or op-
tical gigabit network devices – is fully supported by NetBSD.
Its conservative release cycle allows us to rely on the hard-
ware being fully functional and well-tested rather than hav-
ing to make use of development features in unstable drivers.
At the same time, the progressive nature of NetBSD in areas
such as support for AMD’s 64bit processors or IPv6 network-
ing and its focus on standards compliance ensures that we will
be able to add new hardware as it becomes available while at
the same time continuing to provide our researchers with the
most suitable reference platform available.

3 Infrastructure

At Stevens Institute of Technology, NetBSD is now used
throughout the Department of Computer Science and the De-
partment of Mathematics to maintain the Unix desktops and
public laboratories in addition to a number of administrative
machines.3

In order to maintain these machines, we have developed
a set of administrative scripts that make up an infrastructure
consisting of a dedicated build server and an IPSec’d server-
push strategy to update the clients, providing scalable, se-
cure and easy updates of the OS as well as of all third-party
application. This setup, which has been in production use
for over three years, reduces the administrative overhead in-
volved in managing a large number of virtually identical hosts
immensely and makes a trivial task integrating new machines
into the framework.

All workstations have similar hardware, which allows us
to run a common yet tailored kernel. The kernel contains the
drivers for all available hardware throughout the system, thus
allowing us to replace, for example, a network or a graphics
card without having to recompile the kernel, while at the same
time not suffering the performance penalty of a GENERIC
kernel that includes support for a multitude of devices that
are not required.

3The Department of Computer Science also maintains a state-of-the-art
clustered High Performance Computing Facility suitable for research in areas
of computer science and engineering that may require substantial computa-
tional effort.[4] A second, similar cluster within the Department of Physics
is currently being converted to NetBSD as well.

Since all workstations contain an identical software image,
we can easily minimize downtime of a single system: if a ma-
chine goes down due to a hardware failure, we can quickly
and easily replace the failed component, bring the machine
back up and thus allow the user to continue to use the re-
sources while we troubleshoot the failed device.

Statistical details about the infrastructure presented here
can be found in Figure 1; the general setup is described in
Section 3.1.

of administrative scripts 7
total LOC of administrative scripts 388
of users approx. 2900
of workstations 70
of third-party packages not under pkgsrc 7
of third-party packages under pkgsrc 1054
size of workstation image 9.3 GB

Figure 1: The system in numbers

3.1 Server Configuration

The build server, known by its hostname, amstel, used to
maintain the workstation image, is a dual-processor i386 ma-
chine with 2 GB of RAM, powerful enough to build all re-
quired binary packages and the NetBSD kernel and userland
in an acceptable timeframe. It has enough diskspace in a
RAID 5 disk array to host the pkgsrc and regular src trees
used, the workstation image (itself described in more detail
in section 3.2) and provides enough temporary scratch space
for the build process.

The machine hosts a total of three pkgsrc trees: one for the
latest stable branch of pkgsrc (I), one for the HEAD of pkgsrc
(II) and a third tree which incorporates parts of the HEAD
with the latest stable branch as well as some local modifica-
tions (III). The first two are updated regularly from anony-
mous CVS sources and are used as a reference for the third
one, which is itself used to build packages for the worksta-
tion. Trees (I) and (II) are also exported via NFS through a lo-
cal gigabit network to the other non-NetBSD servers that use
pkgsrc. Tree (III) is mounted via a null-mount from within
two specific chroots.

The first chroot on the server is located in /new and rep-
resents the workstation image in use on all clients. The sec-
ond is located in /sandbox, which represents the “playpen”
for the workstation image. That is, the workstation im-
age is duplicated in this directory and all software updates
or additions are performed in this directory first. Packages
are built and installed here, then turned into binary pack-
ages which can then be added in /new using the pkg_*
tools. This setup makes it possible to update the userland
using the standard NetBSD build.sh build mechanism (see
“Using the build.sh Front End” in [5]) by simply defining
DESTDIR=/sandbox in /etc/mk.conf.

In general, /new is not modified directly and only binary
packages are handled in this chroot, but every now and then
it is necessary to perform one of the various package-related
administrative activities in the /new chroot (after carefully
testing it in /sandbox, of course), which is why the second
null-mount is necessary.

A nightly cronjob checking the set of installed packages
(in each of the server’s base, the sandbox and the production
workstation image) against a list of known vulnerabilities4

ensures that we are alerted of any security issues as soon as a
vulnerability is known.

3.2 Client Configuration

The disk image of the workstations is, as mentioned pre-
viously, stored in amstel:/new. It consists of a stan-
dard NetBSD/i386 installation together with a large num-
ber of third-party applications in order to cater to the dif-
ferent needs of the different users. Among those applica-
tions are most common window managers and desktop en-
vironments (including WindowMaker, KDE and GNOME),
various browsers (including Netscape, Firefox, Mozilla and
Opera), numerous software development tools (ranging from
autoconf and automake to full-featured IDEs like eclipse),
and programming languages (such as Sun’s JDKs, Python,
Perl, Ruby and Scheme), specialized commercial applications
(including MathWorks’ MATLAB and Maplesoft’s Maple)
and office suites and applications (including OpenOffice,
gnumeric, gnucash, abiword and KOffice). In other words, it
includes a complex and full desktop environment for a multi-
tude of different users.

In order to allow us to swap parts easily among all the dif-
ferent workstations or even replace an entire machine with
a minimum downtime for the user, all workstations are kept
identical with respect to the software installed. Since some
of the hardware differs (most notably graphics and network
cards), there are a few differences in a limited number of con-
figuration files, which therefore need to be kept exclusive to
each host in addition to the obviously security-related files:

etc/X11/XF86Config
etc/master.passwd
etc/racoon/psk.txt
etc/rc.conf
etc/spwd.db
etc/ssh/ssh_host_dsa_key.admin
etc/ssh/ssh_host_dsa_key.admin.pub
etc/ssh/ssh_host_key.admin
etc/ssh/ssh_host_key.admin.pub
etc/ssh/ssh_host_rsa_key.admin
etc/ssh/ssh_host_rsa_key.admin.pub
etc/printcap

4using pkgsrc’s audit-packages

The list of files is rather self-explanatory, though it might
be worth pointing out that all machines share the same de-
fault ssh-configuration and -keys. This is due to the fact that
the hostname “lab.cs.stevens-tech.edu” is a round-robin of a
number of these workstations, allowing users to connect to a
generic name, yet spread the load across multiple machines.5

Using a common key for all machines, however, necessi-
tates running a second ssh dæmon on an alternate port for
administrative purposes, which explains the distinct files in
etc/ssh.

In order to keep these files separate from the rest of the
workstation image, we created one directory for each client’s
etc directory in <hostname>-etc as well as one direc-
tory amstel:/new/etcwhich contains all other files usu-
ally found under /etc on a NetBSD host. Section 5.1 ex-
plains how the script used to update a workstation processes
these directories.

4 Software installation

All software installed on the workstations that is not part
of the NetBSD base system is installed, if possible, from
the NetBSD Packages Collection (see [1] and [2] for de-
tailed documentation). Any required piece of software that
is not part of pkgsrc must be carefully investigated: if it is
OSS or otherwise publicly available, we create the appro-
priate package and feed the changes back into the NetBSD
pkgsrc CVS tree. If it is not suitable for inclusion in
the Packages Collection, then the software is installed in
amstel:/new/usr/local. As can be seen from Figure
1, we are fortunate enough to only have a very small num-
ber of applications that cannot be controlled through pkgsrc;
these applications include mostly commercial, specially li-
censed software and a number of homegrown applications
and scripts.

The pkgsrc trees in use are updated via CVS from the local
anoncvs mirror on a regular basis. Due to the large num-
ber of applications installed and the resulting, rather complex
dependency-tree we are taking a more conservative approach
with the production use pkgsrc tree. This tree (III in Section
3.1) is carefully merged and updated on an as-needed basis
only. That is, if a newer version of a piece of software is re-
quired, it is first updated to the latest stable branch of pkgsrc.
If any security fixes have not yet been pulled up to the stable
tree or a newer version is required, the tree is updated to the
HEAD or patches backported. A small number of packages
have some local modifications applied as well.

The build process itself is done in the

5Of course this would also be possible with distinct ssh-keys, but we have
found that especially among novice users and windows clients, multi-homed
hosts with different ssh-keys often cause some confusion and generate warn-
ings about the keys not matching the hostname. Rather than encouraging
users to ignore such warnings, we decided to distribute a single key to all
machines.

amstel:/sandbox chroot to ensure that the pack-
age (and all its dependencies and/or other packages that had
to be updated as a result) can successfully be built, installed,
cleanly deinstalled, reinstalled and tested. Binary packages
are then created from within that chroot and the production
use image is updated accordingly.

5 Update procedure

Updating all the workstations from the build server is done by
means of an IPSec’d server-push performing several rsync-
passes on the remote side (see Section 5.1 for details). The
administrative scripts used to initiate the push allow for syn-
chronization of all workstations or certain subsets based on
department or laboratory in parallel or pushing just a single
machines.

If the changes require additional testing, individual ma-
chines can be synchronized with the sandbox to allow for the
installation or upgrading of large parts of the workstation im-
age without risking breaking all clients in production use. In
these cases a note explaining the currently tested update is
placed into a special file (called “dont”; see Appendix A.2),
the existence of which prevents a full push to all clients from
taking place – a security precaution that has often proved use-
ful.

Similarly, the setup also allows for synchronizing only
parts of the filesystem: each pass can be performed individ-
ually. If, for example, a general system upgrade is still be-
ing tested on some individual workstations but an important
update of one of the applications in /usr/local is pend-
ing, then only the update of that part of the filesystem can be
pushed out to all clients, retaining the full update of the base
system until it has been sufficiently tested.

If parts of the filesystem need to be (temporarily) excluded
from being synchronized, they can be specified in specific
configuration files as regular rsync(1) exclude patterns.

A push-strategy rather than a pull-strategy was chosen to
prevent accidental deployment of not fully tested updates.
Since a push is proactive, it forces the administrators to think
about what changes are ready for deployment and carefully
evaluate when a complete push of all workstations should
take place. A client-pull mechanism might easily be forgot-
ten and cause serious downtime if any software updates were
accidentally left incomplete (either as a result of human neg-
ligence or of a software failure during the upgrade process).
Also, as can be seen from the above, a server-push allows for
much finer control, as a client-pull would have to be auto-
mated and thus complete.

5.1 The push script

The shell script push.sh (the full script can be found in
Appendix A.1) is used to update a single workstation after

changes have been made to the workstation image. It uses
rsync(1) to update the remote host (see section 5.2 for se-
curity considerations). To summarize, push.sh performs
the following steps:

1. Enter new information in /new/etc/updates.
All changes to the workstation image are briefly noted
in the file /usr/local/stevens/UPDATES. This
file helps us keep track of what changes were made
and, more importantly, why they were made. The
push.sh script timestamps this file and places a copy
into /new/etc/updates, so that users can always
review the latest changes and the administrator can eas-
ily determine if any given workstation is currently up-to-
date.

This file is also (manually) emailed in a PGP-signed
message to a local mailing list. This, too, allows users to
keep up to date with changes on the system while at the
same time providing some log of the changes.

2. Set up exclusions.
It may be desirable or necessary to exclude certain files
on a specific host from being synchronized with the rest.
Any such files can be entered in a separate file which is
parsed by push.sh in order to create a list of exclu-
sions.

A reason for such an exclusion might be a machine that
requires a different kernel from all the others, but that is
otherwise identical to the normal workstations.

Note that these exclusions are set up on a per-host ba-
sis. If general site-wide exclusions need to be set up,
they can be entered in a different file using standard
rsync(1) exclude patterns.

3. Run any remote commands if necessary.
Depending on the changes pushed out, it may be neces-
sary to first run a specific command on the remote host,
for example to stop a service or to unmount a partition.
If push.sh finds the file beforesync in the local
directory, it is copied to the remote host where it is exe-
cuted as a shell script.

4. Do passes as desired. The actual push process is di-
vided into several passes which may be specified indi-
vidually. If no pass is explicitly specified, all default
passes are performed consecutively. This allows for fine-
grained control over which parts of the filesystem are
updated and is necessary to set up the appropriate exclu-
sions.

Each pass inspects a special file containing these exclu-
sions as a list of pathnames (directories or files) which
should be ignored when running rsync(1).

5. Do absolute copies if necessary. Similar to the exclu-
sion set up in step two, this step allows special files to be

copied to a specific absolute destination on the remote
host.

6. Run any remote commands if necessary. Depending
on the changes pushed out, it may be necessary to run a
specific command on the remote host after all changes
have been pushed out; for example, to restart a service
after the configuration file was changed.

If push.sh finds the file aftersync in the local di-
rectory, it is copied to the remote host where it is exe-
cuted as a shell script.

As mentioned above, this script only updates a single host.
A number of other scripts are used to update all available
workstations or a subset thereof (see Appendix A.2). In com-
bination with these scripts, push.sh provides a sufficient
amount of flexibility for most situations. For example, if a
major package build is still in progress (for example, KDE
needs to be updated) but a new release of one of the com-
mercial applications installed is available, it would be trivial
to push out the /usr/local hierarchy to all clients, while
retaining /usr/pkg for another time to allow for more test-
ing.

On the other hand, it may be desirable to simply run a spe-
cific command on all hosts or to update a single file. The
script would be able to achieve this, but it would involve some
performance overhead. Therefore we have added a few sim-
ple scripts to perform just these tasks (Appendices A.3, A.4).

5.2 Security considerations

Since the entire filesystem for each client is transferred over
the network, there are a number of security aspects to be con-
sidered. First, we need to ensure that only machines that are
known are allowed to synchronize with the server. Second,
we need to make sure that sensitive files are not transferred in
the clear.

As explained in Section 5, we chose a server-push strategy,
which partly addresses the first problem: no client can initi-
ate the update, so that it’s not possible for a Trojan to connect
to the network, steal a known IP address and request an up-
date. However, it would still be possible for an adversary to
pose as a normal workstation and wait for the update to be
pushed out. Fortunately, that, too, is not possible, as the only
two ways we allow the rsync(1) processes to perform is
either tunneled through ssh(1) or by use of rsh(1) over
mandatory IPsec.

Both of these approaches require authentication, either by
use of the private ssh-key for the dæmon listening on an alter-
nate port or by use of IKE, IPSec’d dynamic encryption key
exchange protocol. In our setup, we use racoon(8) with a
pre-shared secret key stored in /etc/racoon/psk.txt.
The permissions on this file – just like on the private
ssh keys in /etc/ssh/ – do not allow regular users

type remote shell time
minor updateem + rsh + ipsec 332.27s → 5.5m
minor update ssh 459.48s → 7.6m
major update* rsh + ipsec 474.42s → 7.9m
major update ssh 494.91s → 8.25m
full update# rsh + ipsec 1307.71s → 21.8m
full update ssh 1426.22s → 23.8m

+ update of a few files or a small package
* update of at least three large packages (such as mozilla, KDE etc.)
update of the entire userland and several large packages

Figure 2: Scalability of a single push

to read these, so it should be impossible for the adver-
sary to pose as the real client when a push is initiated by
the server. Similarly, we have a specific ssh-key set in
/root/.ssh/authorized_keys (the private key for
which is only on the non-publicly accessible build server) that
is used for synchronizing the machines if ssh is used as the
remote shell, allowing access by this key only from the build
server.

It might be possible to run nearly the entire push unen-
crypted using regular rsh(1) for rsync, but clearly there
are a few files that must not be transmitted in the clear
(/etc/master.passwd and the files from the previous
paragraph, for instance). However, if this approach were pur-
sued, then the push script would need to switch the mecha-
nism used to log in the remote machine based on the files to
be transferred. This does not prove to be scalable, especially
since packages are added that might also require encryption
during file transfer (for example the sudo(8) package). In
addition, we would loose the authentication mechanism pro-
vided by IPsec, which is why in the end we decided to make
use of IPsec for all rsh/rlogin processes mandatory. Once
we enabled IPsec, we quickly realized that another beneficial
side-effect was that it allowed us to let syslogd(8) log all
events to amstel in a secure fashion as well.

5.3 Scalability

When expanding the network of clients under control of this
system, it is important to consider how well the system scales,
how long each process takes, and what the penalties are of
choosing one approach over another. The main factors with
respect to scalability are:

• the time it takes for a single complete update

• the time it takes for all clients to be updated

The time it takes for a complete update is influenced by
the number of changes since the last update, as well as which
push-strategy (ssh or rsync over IPsec) is chosen. In produc-
tion use there may often be miniscule changes (i.e. changes

of only a few files) just as there may be rather large updates
(such as a rebuild of a significant portion of the binary pack-
ages) that need to be pushed out. Figure 2 shows the time
in seconds for a few example changes including the worst-
case scenario: an update of the entire base system as well as
a number of large third-party updates.

Another factor in the calculation of these numbers is the
amount of RAM available on the client. The majority of the
workstations have 512 MB RAM, but a number of them still
have only 256, while a few have as much as 1 GB RAM. The
numbers in Figure 2 and Figure 3 are based on the average
of repeated pushes of machines with 256 MB RAM, with the
highest and lowest results being dropped.

The time it takes for all clients to be updated obviously de-
pends on the time for each individual client, but also on how
many hosts can be pushed out in parallel without saturating
the network connection or overloading the server. Figure 3
shows the results of updating several sets of machines.

6 New workstation installation

Adding a new workstation into this setup is trivial. After the
hostname of the new machine and its intended physical loca-
tion (which determines the subnet the new host will be on) has
been specified, we generate a new configuration for this client
by using the script gen-conf.sh (see Appendix A.5). To
complete the setup on the server side, all we need to do is add
the new hostname to the appropriate collection of machines
that allow us to push subsets based on location.

The actual installation process is initiated by booting off
a NetBSD install floppy or CD-ROM. Instead of perform-
ing the regular installation that NetBSD’s sysinst tool
would usually initiate, we abort the installation process and
disklabel(8) the hard drive by hand, configure the net-
work and mount the workstation image via NFS from the
build server. Finally, we run the script getit.sh (see Ap-
pendix A.6), which completes the installation.

6.1 Security considerations

While the installation procedure as described above is simple
enough, we must to again pay attention to the security aspects

type remote shell time
minor update rsh + ipsec 36m
minor update ssh 49m
major update rsh + ipsec 47m
major update ssh 51m
full update rsh + ipsec 149m
full update ssh 155m

Figure 3: Scalability of a full push

of performing a network install. The same files that neces-
sitate encryption during the update process (as explained in
Section 5.2) must not be transmitted in the clear during the
installation process and are therefore omitted at this point.

Since we do not intend to transmit these sensitive files,
they are not stored under the amstel:/new directory. This
in turn allows us to make the /new directory accessible via
NFS – clearly, this would be impossible if these files resided
therein: the adversary could presumably connect a rogue ma-
chine to the network and mount the directory via NFS by
spoofing one of the IP addresses which are granted access.
Without any sensitive information under this hierarchy, the
adversary can only gain access to the same files she could
otherwise retrieve from any public workstation.

On the other hand, the fact that we must not transfer the
pre-shared secrets and other important files in the clear leaves
us with a bit of a conundrum: the installation cannot be com-
pletely unattended, as both the sshd keys and the pre-shared
secret for IKE must not go across the network unencrypted
and the installation process cannot be encrypted, as the pre-
shared secrets are not yet on the to-be-installed client. We will
look at possible solutions to this problem in Section 7.2. For
the time being, this forces us to add manually one of the pre-
shared secrets after the installation process and run a partial
push (to synchronize the other sensitive files) before deploy-
ment of the new host.

6.2 Scalability

As we have seen above, installing a single host does not in-
volve much effort, but how long does it actually take, and how
well does this system scale if a large number of hosts need to
be installed? The process of generating a new configuration
for a new host is obviously simple and will take negligible
time, as only a single short shell script needs to be executed.
For a large number of new hosts, this can be wrapped into a
for-loop and still not take much longer than it takes to actu-
ally enter the data the script requires. Should it be necessary
to integrate a significant number of new hosts into this setup,
it might be wise to collect the required information before-
hand and tweak the script to run non-interactive.

The most time is spent actually installing the software on
the new machine. Due to the large size of the workstation
image based on the huge number of packages required, it
quickly becomes clear that at this time the bottleneck lies
in the network installation procedure. Most installations are
currently done over the regular 10/100 campus network, as
gigabit networking is not currently available in all parts of
the campus. On average, the installation process from start
to finish (including the creation of a new configuration on
the build host, booting the new host from installation media,
disklabel(8)ing the hard drive, running the install script
over NFS) takes approximately 67 minutes. In Section 7.3 we
will consider ways to improve this process.

Installing multiple hosts at the same time faces the same
limitations as running multiple pushes at the same time: the
more clients install in parallel, the higher the load on the build
server and the higher the saturation of the network connec-
tion. Fortunately, at the moment there rarely is a need to per-
form more than just a handful of installations at once.

7 What’s next?

While the current configuration allows for convenient and
easy installation and maintenance of the workstations, like
any other piece of software or administrative setup, there is,
of course, always room for improvement. In this section, we
will try to look at solutions for the problems mentioned in
previous sections, as well as consider new features that might
be desirable.

7.1 Improving the general setup

Given the large number of applications under pkgsrc control,
it is crucial that the package management system works flaw-
lessly when updating packages. Until the beginning of the
year, the ever-changing nature of pkgsrc was somewhat of a
problem: trying to follow a fast-moving target, our pkgsrc
trees would have to be updated frequently to keep up with the
infrastructure changes under pkgsrc/mk, but on the other
hand it was risky to update the entire tree: it would then al-
ways contain the latest release of each version of software, so
that building one package may pull in an update of another,
already-installed package even though that is not strictly re-
quired. Rebuilding large parts of the installed software could
occasionally lead to a broken dependency, leaving the work-
station image in a non-stable state or – in the worst case –
without a particular required package.

Fortunately, the NetBSD Packages team introduced the
concept of stable pkgsrc branches, which made a lot of sys-
tem administrators very happy by allowing for much easier
tracking of the installed packages and keeping up with secu-
rity issues. While this has improved the situation immensely,
from time to time we still encounter instances of package
dependencies6 that are not strictly necessary, which is why
we must maintain our own pkgsrc tree alongside the stable
branch, merging changes and updates by hand. In addition,
it is occasionally necessary to install conflicting packages on
the same system.7 This currently requires more modifications
to the packages in question which must be remembered when
updating the pkgsrc trees.

The pkgviews framework, introduced to pkgsrc early this
year, promises to solve a number of these problems (refer to
[6] for details), but unfortunately it will require starting with
a clean slate, so to speak: the need to uninstall every single

6buildlink bumps have proven to be particularly dangerous
7An example: we currently have both print/teTeX1 and print/teTeX in-

stalled to allow our users to continue to use their older TeX files.

package and rebuild them using pkgviews is a project that we
originally intended to approach during the summer of 2004,
but for which, in the end did not have time. The conversion
to pkgviews therefore remains on our list of improvements of
the system.

As mentioned previously, all software is compiled in a
sandbox and binary packages built, which are then used to
maintain the actual workstation image. This is done only on
an as-needed basis at the moment, allowing for the potential
risk of encountering a failure at a crucial time. To avoid
this scenario, it might be desirable to create a system that
periodically builds binary packages from scratch, so that
newer versions of binary packages compiled for our systems
are immediately available. It might be feasible to perform
complete bulk-builds to anticipate new software requests, or
we might consider only building what is currently installed.
Frameworks for both approaches do already exist within
pkgsrc and we should be able to implement such a solution
with relative ease.

While we use a problem report system at Stevens Insti-
tute of Technology to track and analyze software requests
and complications, this system often relies on the user to pro-
vide an accurate analysis of the situation or detailed feedback.
When changes to the software are made, they are not always
annotated in great detail in the PR system, so that several
weeks or months later it is not always clear why exactly a
change was made, or what change was made to fix a partic-
ular problem. Maintaining a detailed changelog of the en-
tire workstation image, possibly through the use of a revision
control system, such as CVS, would prove useful.

Similarly, the scripts that maintain the system presented in
this paper are currently not under any revision control either.
Importing these files into a CVS repository would similarly
allow us to better track the files as they are changed as well as
quickly and easily determine why a certain change was made.

Finally, our system did not provide detailed documentation
on how workstation installations or updates are done. Fortu-
nately, this paper easily solves this problem, but it will require
us to update it regularly to keep the documentation in sync
with reality.

7.2 Improving Security

It might be worth considering identifying clients not only by
hostname or IP address, but to also require their MAC address
to match to introduce one more barrier for a MITM based at-
tack. However, this approach introduces a significant admin-
istrative overhead while not gaining much more security: on
the one hand, it is relatively easy for the adversary to spoof a

MAC address8 just like she could spoof the IP address; on the
other hand, it would require the careful logging of each ma-
chine’s ethernet interface change. Since we routinely swap
hardware among different clients, such a MAC-address-to-
hostname mapping could easily become outdated.

Of more urgency would be the development of an en-
crypted installation mechanism, which would allow us to
move to an entirely unattended install process. Considering
the chicken-and-the-egg problem eluded to in Section 6.1, in
this context one possible solution might be to use asymmet-
ric cryptography rather than the current symmetric approach,
which necessitates the existence of a pre-shared secret on
both sides. An alternative solution might involve a custom in-
stall CD containing a special “install-key” and to perform en-
cryption and decryption for the few sensitive files using PGP
or OpenSSL. Finally, we might decide to pay the price of con-
venience9 and perform installations through a private network
only.

7.3 Improving Scalability

As mentioned above, the Stevens campus network does not
currently provide gigabit networking. However, our build
server is equipped with a gigabit network card and connected
to a small private gigabit switch through which it performs
regular backups of various other servers. In order to allow for
a faster installation, we could perform this process over the
private gigabit network, taking advantage of a more secure
and much faster connection to the server.

Another way to cut down on the time taken for a full
installation would be to install only what is necessary to
deploy the system and then update the rest on the next
push. For example, the /usr/src hierarchy does not
need to be immediately available and could be excluded
during installation. On the other hand, this increases the
load during the first push, so we really do not gain very much.

The numbers in Figure 3 represent a push of all machines
while synchronizing approximately 20 hosts at the same time.
This number was chosen without much empirical evidence of
a performance increase, but was rather based on the increase
of processing speed and memory in the server compared af-
ter an upgrade. It might be desirable to perform more accu-
rate benchmark tests and determine the appropriate number
of parallel pushes to optimize CPU-, memory- and network
utilization.

8It is noting that since many of our workstations are in public laboratories,
it would even be possible for the adversary to simply steal the actual ethernet
device of one of the machines.

9I.e. we no longer would be able to install a new machine from any
department.

8 Conclusion

In this paper I hope to have debunked the common mis-
conception that NetBSD is “not ready for the desktop” and
stressed the importance of an “admin-friendly” operating sys-
tem for production use in an environment that at the same
time demands a sophisticated environment for computer spe-
cialists as well as a more traditional, user-friendly setup for
novices. The desktop workstation control system presented
allows, as we have seen, for simple yet scalable maintenance
of a large number of identical workstations from a central
build server.

The update and installation processes provide enough flex-
ibility to allow for multiple configuration differences among
hosts and subnets while at the same time ensuring that secu-
rity relevant files are not compromised. As mentioned above,
the infrastructure has been in production use for several years
and has in addition been used as a basis of a very similar
system for the maintenance of one of our High Performance
Computing Facilities (also entirely based on NetBSD).

Like all software systems, there is room for improvement,
and I have elaborated on a few shortcomings and considered
ways to improve the system. The most important scripts of
this setup can be found in the Appendix and have been placed
in the public domain – any corrections, suggestions or ques-
tions are most welcome and can be directed at the author.

9 Author Information

Jan Schaumann is a System Administrator in the Depart-
ment of Computer Science at Stevens Institute of Tech-
nology in Hoboken, NJ, USA, where he manages a large,
nearly homogenous NetBSD environment, ports and main-
tains NetBSD pkgsrc tools and packages on non-NetBSD
platforms such as IRIX and Linux, and teaches classes in
UNIX programming and System Administration.

Jan holds Bachelor’s and Master’s degrees in Computer
Science from Stevens Institute of Technology; he joined the
NetBSD Project as a developer in January of 2002 and en-
joys living with his wife Paula in New York City. The non-
computer related activities he enjoys usually involve a board,
often in combination with some form of H2O. Jan can be
reached at jschauma@cs.stevens.edu.

A Code Listings

A.1 The push.sh script used to update a single host

#! /bin/sh
#
This file is placed into the public domain.
#
The original authors are Thor Lancelot Simon and Jan Schaumann.
#
THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#set -x
#DONTDOIT=echo

LOCALFILES=/usr/local/stevens
RSYNC_RSH=rsh
PASSES=all
ROOT=/new
RSYNC_OPTS="-aSH"

usage()
{

echo "Usage: $0: [-p <pass>] [-r <root>] [-s]"
exit 1;

}

args=‘getopt p:r:s $*‘
if [$? -ne 0]; then

usage
fi
set -- $args

while [$# -gt 0]; do
case "$1" in

-p)
PASSES=$2; shift
;;

-r)
ROOT=$2; shift
;;

-s)
RSYNC_RSH=${LOCALFILES}/rsync-ssh
;;

--)

shift; break
;;

esac
shift

done

export RSYNC_RSH

for i in $*; do

echo "NEW HOST: $i"

show when we last updated
date > ${ROOT}/etc/updates
echo >> ${ROOT}/etc/updates
cat ${LOCALFILES}/UPDATES >> /new/etc/updates

set up exclusions. Rather ghastly.
awk "/ˆEXCLUDE/ {if ((\$2 == \"$i\") && \
(\$3 == \"/\")) print \$4}" < special.files > /tmp/x0.$i.$$
awk "/ˆEXCLUDE/ {if ((\$2 == \"$i\") && \
(\$3 == \"/etc\")) print \$4}" < special.files > /tmp/x1.$i.$$
awk "/ˆEXCLUDE/ {if ((\$2 == \"$i\") && \
(\$3 == \"/usr/pkg\")) print \$4}" < special.files > /tmp/x2.$i.$$
awk "/ˆEXCLUDE/ {if ((\$2 == \"$i\") && \
(\$3 == \"/var/db/pkg\")) print \$4}" < special.files > /tmp/x3.$i.$$

start the bombardment
if [-e ./beforesync]; then

$DONTDOIT rsync ./beforesync $i:/tmp
$DONTDOIT $RSYNC_RSH $i chmod u+x /tmp/beforesync
$DONTDOIT $RSYNC_RSH $i /tmp/beforesync

fi

note that these "passes" correspond to the exclusion statements above
if ["$PASSES" = "/" -o "$PASSES" = "all"]; then

echo "pass 0: /"
$DONTDOIT rsync ${RSYNC_OPTS} --delete --one-file-system \

--exclude-from=${LOCALFILES}/exclude-from \
--exclude-from=/tmp/x0.$i.$$ ${ROOT}/ $i:/

fi

if ["$PASSES" = "/etc" -o "$PASSES" = "all"]; then
echo "pass 1: /etc"
$DONTDOIT rsync ${RSYNC_OPTS} --delete \

--exclude-from=${LOCALFILES}/exclude-from-etc \
--exclude-from=/tmp/x1.$i.$$ ${ROOT}/etc/ $i:/etc

$DONTDOIT rsync ${RSYNC_OPTS} ${LOCALFILES}/client-etcs/common-files/ $i:/etc
$DONTDOIT rsync ${RSYNC_OPTS} ${LOCALFILES}/client-etcs/$i-etc/ $i:/etc

fi

if ["$PASSES" = "/usr/pkg" -o "$PASSES" = "all"]; then
echo "pass 2: /usr/pkg"
$DONTDOIT rsync ${RSYNC_OPTS} --delete --exclude-from=/tmp/x2.$i.$$ \

${ROOT}/usr/pkg/ $i:/usr/pkg

echo "pass 3: /var/db/pkg"
$DONTDOIT rsync ${RSYNC_OPTS} --delete --exclude-from=/tmp/x3.$i.$$ \

${ROOT}/var/db/pkg/ $i:/var/db/pkg
fi

if ["$PASSES" = "/usr/local"]; then
echo "pass: /usr/local"
$DONTDOIT rsync ${RSYNC_OPTS} --delete ${ROOT}/usr/local/ $i:/usr/local

fi

if ["$PASSES" = "/usr/src" -o "$PASSES" = "all"]; then

if [! ‘grep $i small‘]; then
echo "pass 3.5: /usr/src"
$DONTDOIT rsync --exclude-from=${LOCALFILES}/exclude-from-src \

--delete-excluded ${RSYNC_OPTS} --delete ${ROOT}/usr/src/ $i:/usr/src
fi

fi

if ["$PASSES" = "absolute" -o "$PASSES" = "all"]; then
"pass 4": special "absolute" copies (shudder in fear!)
echo "pass 4: absolute copies (if any)"
$DONTDOIT eval ‘awk "/ˆABSCOPY/ {if (\\$2 == \\"$i\\") \

print \\"rsync ${RSYNC_OPTS} \\" \\$4 \\" \\" \\$2 \\":\\" \
\\$3 \\";\\"}" < special.files‘

fi

if [-f specials/aftersync.$i]; then
$DONTDOIT rsync specials/aftersync.$i $i:/tmp
$DONTDOIT $RSYNC_RSH $i chmod u+x /tmp/aftersync.$i
$DONTDOIT $RSYNC_RSH $i /tmp/aftersync.$i

fi

if [-e ./aftersync]; then
$DONTDOIT rsync ./aftersync $i:/tmp
$DONTDOIT $RSYNC_RSH $i chmod u+x /tmp/aftersync
$DONTDOIT $RSYNC_RSH $i /tmp/aftersync

fi

rm /tmp/x0.$i.$$
rm /tmp/x1.$i.$$
rm /tmp/x2.$i.$$
rm /tmp/x3.$i.$$

done

A.2 The push.batch.sh script used to update all hosts in parallel

#! /bin/sh
#
This file is placed into the public domain.
#
The original author is Jan Schaumann.
#
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

BASE=/usr/local/stevens

if [-f ${BASE}/dont]; then
echo "You probably don’t want to do this right now..."
cat ${BASE}/dont
exit 1

fi

MACHINES=‘egrep -v ˆ# ${BASE}/machines.${1:-all}‘

if [$# -gt 0]; then
unset MACHINES
for SET in $@; do

ADDMACH=‘egrep -v ˆ# ${BASE}/machines.${SET}‘
MACHINES="$ADDMACH $MACHINES"

done
fi

echo $MACHINES | xargs -n 3 ${BASE}/bgsync.sh

A.3 The pushfile.sh script used to update a single file

#! /bin/sh
#
This file is placed into the public domain.
#
The original author is Jan Schaumann.
#
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#DONTDOIT=echo
file=${FILE:?"No file?"}

if [-z ${RSYNC_RSH}]; then
RSYNC_RSH=rsh

fi
#export RSYNC_RSH=/usr/local/stevens/rsync-ssh
export RSYNC_RSH

for i in $*; do

echo "NEW HOST: $i"

$DONTDOIT rsync /new/$file $i:/$file
done

A.4 The runcmd.sh script used to run a command on the remote host

#! /bin/sh
#
This file is placed into the public domain.
#
The original author is Jan Schaumann.
#
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DONTDOIT=echo
cmd=${CMD:-"uname -a"}

if [-z ${RSYNC_RSH}]; then
RSYNC_RSH=rsh

fi

export RSYNC_RSH

for i in $*; do

echo "NEW HOST: $i"
$DONTDOIT $RSYNC_RSH $i $cmd

done

A.5 The gen-conf.sh script used to add a new host

#! /bin/sh
#
This file is placed into the public domain.
#
The original authors are Thor Lancelot Simon and Jan Schaumann.
#
THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ENVBASE=/new

if [$1]; then
NEWHOST=$1
echo using host $1
shift

else
read -p "Name of new host? " NEWHOST

fi

LOCALFILES=/usr/local/stevens/
NEWETC=${LOCALFILES}/client-etcs/${NEWHOST}-etc

if [-e ${NEWETC}]; then
echo "I’m sorry, ${NEWETC} already exists. You can’t name a host ${NEWHOST}." >/dev/stderr
exit 1

fi

if [$1]; then
FQDN=$1
echo using FQDN $1
shift

else
read -p "Fully-qualified domain name of new host? " FQDN

fi

read -p "Enter name of primary ethernet interface (e.g. fxp0): " ETHERTYPE
read -p "Enter IP address of primary ethernet interface: " INETADDR

SUBNET=‘echo ${INETADDR} | awk ’BEGIN {FS="."; OFS="."} {print $3}’‘
DEFROUTER=‘echo ${INETADDR} | awk ’BEGIN {FS="."; OFS="."} {print $1,$2,$3,"1"}’‘

mkdir -p ${NEWETC}/ssh ${NEWETC}/racoon ${NEWETC}/ssh
cp ${LOCALFILES}/rc.conf.default ${NEWETC}

echo hostname\=${FQDN} >> ${NEWETC}/rc.conf
echo ifconfig_${ETHERTYPE}\=\"inet ${INETADDR} netmask 255.255.255.0\" >> ${NEWETC}/rc.conf
echo defaultroute\=${DEFROUTER} >> ${NEWETC}/rc.conf

ln -s printcap.${SUBNET} ${NEWETC}/printcap

echo "Now you must select an X-Windows configuration for the new machine."

while [! -f ${NEWETC}/X11/${WHICHX}]; do
echo "These are the configurations available. Please select one."
(cd ${NEWETC}/X11; ls XF86*)
read -p "Which configuration file? " WHICHX

done

ln -s ${WHICHX} ${NEWETC}/X11/XF86Config

echo Now you must set a root password for the new machine.

get default, just to make sure
cp ${LOCALFILES}/master.passwd.default ${ENVBASE}/etc/master.passwd

chroot ${ENVBASE} /usr/bin/passwd -l root

put in place
mv ${ENVBASE}/etc/master.passwd ${ENVBASE}/etc/spwd.db ${NEWETC}/

overwrite, just to make sure
cp ${LOCALFILES}/master.passwd.default ${ENVBASE}/etc/master.passwd

RACKEY=‘hexdump -n 16 -e \"%08x%08x%08x%08x\\\n\" /dev/urandom‘;
echo -e "${INETADDR}\t${RACKEY}" >> /etc/racoon/psk.txt
echo -e "155.246.89.68\t${RACKEY}" > ${NEWETC}/racoon/psk.txt
chmod 0600 ${NEWETC}/racoon/psk.txt

echo Making SSH host keys for ${NEWHOST}...

umask 022
/usr/bin/ssh-keygen -t rsa1 -b 1024 -f ${NEWETC}/ssh/ssh_host_key -N ’’
/usr/bin/ssh-keygen -t dsa -f ${NEWETC}/ssh/ssh_host_dsa_key -N ’’
/usr/bin/ssh-keygen -t rsa -f ${NEWETC}/ssh/ssh_host_rsa_key -N ’’
/usr/bin/ssh-keygen -t rsa1 -b 1024 -f ${NEWETC}/ssh/ssh_host_key.admin -N ’’
/usr/bin/ssh-keygen -t dsa -f ${NEWETC}/ssh/ssh_host_dsa_key.admin -N ’’
/usr/bin/ssh-keygen -t rsa -f ${NEWETC}/ssh/ssh_host_rsa_key.admin -N ’’

echo I have set up ${NEWETC} for you, but you will probably need to
echo check the following files: ${NEWETC}/rc.conf,
echo ${NEWETC}/inetd.conf, $NETWETC/ipsec.conf, ${NEWETC}/racoon/psk.txt
echo
echo Remember to restart racoon and ipsec as well.

A.6 The getit.sh script used to install a new host

#!/bin/sh
#
This file is placed into the public domain.
#
The original author is Jan Schaumann.
#
THIS SOFTWARE IS PROVIDED BY THE AUTHORS ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#DONT="echo"

for i in ‘cat /mnt2/getit.excludes‘; do
export EXCLUDES="-s ,ˆ./$i,,p ${EXCLUDES}"

done

PAX="pax ${EXCLUDES} -rwvp e "
DEVICE="wd0a"

echo Stage 1: Creating filesystem...
echo -------------------------------
$DONT /sbin/newfs /dev/r${DEVICE}

echo Stage 2: Mounting filesystem...
echo -------------------------------
$DONT /sbin/mount -o async /dev/${DEVICE} /mnt

$DONT mkdir -p /mnt/tmp
$DONT chmod 1777 /mnt/tmp
$DONT export TMPDIR=/mnt/tmp

echo Stage 3: Starting the bombardment...
echo ------------------------------------

cd /mnt2 && $DONT $PAX . /mnt/

cd /mnt2/usr/mdec
$DONT ./installboot -v biosboot.sym /dev/$DEVICE

echo "Remember to:"
echo " - manually install etc/racoon/psk.txt"
echo " - reboot, ifconfig and push"

References

[1] Documentation on the NetBSD Package System Hubert Feyrer, Alistair Crooks et al, pkgsrc/Packages.txt, October 2004

[2] The NetBSD Packages Collection
http://www.NetBSD.org/Documentation/software/packages.html

[3] Binary emulation in NetBSD
http://www.NetBSD.org/Documentation/compat.html

[4] High Performance Computing at Stevens Institute of Technology
http://www.cs.stevens.edu/˜jschauma/hpcf/

[5] The NetBSD Operating System Federico Lupi et al, October 2004
http://www.NetBSD.org/guide/en/

[6] Package Views - a more flexible infrastructure for third-party software, Alistair Crooks, November 2002
http://www.NetBSD.org/Documentation/software/pkgviews.pdf

